ed 2021-10-07 18:21:33 +01:00
parent 6a9a8a2994
commit 7722079d0f
1 changed files with 149 additions and 573 deletions

View File

@ -1,14 +1,46 @@
// SPDX-License-Identifier: GPL-2.0+
/*
* HWMON driver for ASUS motherboards that publish some sensor values
* via the embedded controller registers
* HWMON driver for ASUS motherboards that provides sensor readouts via WMI
* interface present in the UEFI of the X370/X470/B450/X399 Ryzen motherboards.
*
* Copyright (C) 2021 Eugene Shalygin <eugene.shalygin@gmail.com>
* Copyright (C) 2018-2019 Ed Brindley <kernel@maidavale.org>
*
* WMI interface provided:
* CPU Core Voltage,
* CPU SOC Voltage,
* DRAM Voltage,
* VDDP Voltage,
* 1.8V PLL Voltage,
* +12V Voltage,
* +5V Voltage,
* 3VSB Voltage,
* VBAT Voltage,
* AVCC3 Voltage,
* SB 1.05V Voltage,
* CPU Core Voltage,
* CPU SOC Voltage,
* DRAM Voltage,
* CPU Fan,
* Chassis Fan 1,
* Chassis Fan 2,
* Chassis Fan 3,
* HAMP Fan,
* Water Pump,
* CPU OPT,
* Water Flow,
* AIO Pump,
* CPU Temperature,
* CPU Socket Temperature,
* Motherboard Temperature,
* Chipset Temperature,
* Tsensor 1 Temperature,
* CPU VRM Temperature,
* Water In,
* Water Out,
* CPU VRM Output Current.
*/
#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
#define DRVNAME "asus_wmi_sensors"
#include <linux/acpi.h>
#include <linux/dmi.h>
#include <linux/hwmon.h>
#include <linux/hwmon-sysfs.h>
@ -18,65 +50,35 @@
#include <linux/module.h>
#include <linux/mutex.h>
#include <linux/platform_device.h>
#include <linux/acpi.h>
#include <linux/units.h>
#include <linux/wmi.h>
#define ASUSWMI_MONITORING_GUID "466747A0-70EC-11DE-8A39-0800200C9A66"
#define ASUSWMI_METHODID_BLOCK_READ_EC 0x42524543 /* BREC */
#define ASUSWMI_METHODID_GET_VALUE 0x52574543
#define ASUSWMI_METHODID_UPDATE_BUFFER 0x51574543
#define ASUSWMI_METHODID_GET_INFO 0x50574543
#define ASUSWMI_METHODID_GET_NUMBER 0x50574572
#define ASUSWMI_METHODID_GET_BUFFER_ADDRESS 0x50574573
#define ASUSWMI_METHODID_GET_VERSION 0x50574574
#define ASUS_WMI_MAX_STR_SIZE 32
#define HWMON_MAX 9
#define ASUS_WMI_BLOCK_READ_REGISTERS_MAX 0x10 /* from the ASUS DSDT source */
/* from the ASUS_WMI_BLOCK_READ_REGISTERS_MAX value */
#define ASUS_WMI_MAX_BUF_LEN 0x80
#define MAX_SENSOR_LABEL_LENGTH 0x10
#define ASUSWMI_SENSORS_MAX 11
#define ASUS_EC_KNOWN_EC_REGISTERS 14
#define HWMON_MAX 9
enum asus_wmi_ec_board {
BOARD_R_C8H, // ROG Crosshair VIII Hero
BOARD_R_C8DH, // ROG Crosshair VIII Dark Hero
BOARD_R_C8F, // ROG Crosshair VIII Formula
BOARD_RS_X570_E_G, // ROG STRIX X570-E GAMING
BOARD_RS_B550_E_G, // ROG STRIX B550-E GAMING
};
/* boards with EC support */
static const char *const asus_wmi_ec_boards_names[] = {
[BOARD_R_C8H] = "ROG CROSSHAIR VIII HERO",
[BOARD_R_C8DH] = "ROG CROSSHAIR VIII DARK HERO",
[BOARD_R_C8F] = "ROG CROSSHAIR VIII FORMULA",
[BOARD_RS_X570_E_G] = "ROG STRIX X570-E GAMING",
[BOARD_RS_B550_E_G] = "ROG STRIX B550-E GAMING",
};
/* boards with wmi sensors support */
static const char *const asus_wmi_boards_names[] = {
"ROG CROSSHAIR VII HERO (WI-FI)",
"ROG CROSSHAIR VII HERO",
"ROG CROSSHAIR VI HERO (WI-FI AC)",
"CROSSHAIR VI HERO",
"ROG CROSSHAIR VI EXTREME",
"ROG ZENITH EXTREME",
"ROG ZENITH EXTREME ALPHA",
"ROG CROSSHAIR VI HERO",
"PRIME X399-A",
"PRIME X470-PRO",
"ROG STRIX X399-E GAMING",
"ROG CROSSHAIR VI EXTREME",
"ROG CROSSHAIR VI HERO (WI-FI AC)",
"ROG CROSSHAIR VII HERO",
"ROG CROSSHAIR VII HERO (WI-FI)",
"ROG STRIX B450-E GAMING",
"ROG STRIX B450-F GAMING",
"ROG STRIX B450-I GAMING",
"ROG STRIX X470-I GAMING",
"ROG STRIX X399-E GAMING",
"ROG STRIX X470-F GAMING",
"ROG STRIX X470-I GAMING",
"ROG ZENITH EXTREME",
"ROG ZENITH EXTREME ALPHA",
};
enum asus_wmi_sensor_class {
@ -85,7 +87,6 @@ enum asus_wmi_sensor_class {
FAN_RPM = 0x2,
CURRENT = 0x3,
WATER_FLOW = 0x4,
// BOOL = 0x5 //TODO
};
enum asus_wmi_location {
@ -102,7 +103,6 @@ enum asus_wmi_location {
enum asus_wmi_type {
SIGNED_INT = 0x0,
UNSIGNED_INT = 0x1,
// BOOL = 0x2, //TODO
SCALED = 0x3,
};
@ -127,162 +127,48 @@ static u32 hwmon_attributes[] = {
[hwmon_fan] = HWMON_F_INPUT | HWMON_F_LABEL,
};
/**
* struct asus_wmi_sensor_info - sensor info.
* @id: sensor id.
* @data_type: sensor class e.g. voltage, temp etc.
* @location: sensor location.
* @name: sensor name.
* @source: sensor source.
* @type: sensor type signed, unsigned etc.
* @cached_value: cached sensor value.
*/
struct asus_wmi_sensor_info {
u32 id;
int data_type; // asus_wmi_sensor_class e.g. voltage, temp etc
int location; // asus_wmi_location
int data_type;
int location;
char name[ASUS_WMI_MAX_STR_SIZE];
int source; // asus_wmi_source
int type; // asus_wmi_type signed, unsigned etc
int source;
int type;
u32 cached_value;
};
union asus_wmi_ec_sensor_address {
u32 value;
struct {
u8 index;
u8 bank;
u8 size;
u8 dummy;
} addr;
};
struct asus_wmi_ec_sensor_info {
char label[MAX_SENSOR_LABEL_LENGTH];
enum hwmon_sensor_types type;
union asus_wmi_ec_sensor_address addr;
u32 cached_value;
};
struct asus_wmi_ec_info {
struct asus_wmi_ec_sensor_info sensors[ASUSWMI_SENSORS_MAX];
/* UTF-16 string to pass to BRxx() WMI function */
char read_arg[((ASUS_WMI_BLOCK_READ_REGISTERS_MAX * 4) + 1) * 2];
u8 read_buffer[ASUS_WMI_BLOCK_READ_REGISTERS_MAX];
u8 nr_sensors; /* number of board EC sensors */
/* number of EC registers to read (sensor might span more than 1 register) */
u8 nr_registers;
unsigned long last_updated; /* in jiffies */
};
struct asus_wmi_wmi_info {
u8 buffer;
unsigned long source_last_updated[3]; /* in jiffies */
u8 sensor_count;
const struct asus_wmi_sensor_info **info[HWMON_MAX];
const struct asus_wmi_sensor_info **info[hwmon_max];
struct asus_wmi_sensor_info **info_by_id;
};
struct asus_wmi_sensors {
/* lock access to instrnal cache */
struct mutex lock;
struct asus_wmi_ec_info ec;
struct asus_wmi_wmi_info wmi;
int ec_board;
int wmi_board;
};
struct asus_wmi_data {
int ec_board;
int wmi_board;
int wmi_count;
};
static inline union asus_wmi_ec_sensor_address asus_wmi_ec_make_sensor_address(u8 size,
u8 bank,
u8 index)
{
union asus_wmi_ec_sensor_address res;
res.value = (size << 16) + (bank << 8) + index;
return res;
}
static inline void asus_wmi_ec_set_sensor_info(struct asus_wmi_ec_sensor_info *sensor_info,
const char *label,
enum hwmon_sensor_types type,
union asus_wmi_ec_sensor_address addr,
u8 *nr_regs)
{
sensor_info->type = type;
strcpy(sensor_info->label, label);
sensor_info->cached_value = 0;
sensor_info->addr.value = addr.value;
*nr_regs += sensor_info->addr.addr.size;
}
static void asus_wmi_ec_fill_board_sensors(struct asus_wmi_ec_info *ec, int board)
{
struct asus_wmi_ec_sensor_info *si;
si = ec->sensors;
ec->nr_registers = 0;
switch (board) {
case BOARD_RS_B550_E_G:
case BOARD_RS_X570_E_G:
case BOARD_R_C8H:
case BOARD_R_C8DH:
case BOARD_R_C8F:
asus_wmi_ec_set_sensor_info(si++, "Chipset", hwmon_temp,
asus_wmi_ec_make_sensor_address(1, 0x00, 0x3A),
&ec->nr_registers);
asus_wmi_ec_set_sensor_info(si++, "CPU", hwmon_temp,
asus_wmi_ec_make_sensor_address(1, 0x00, 0x3B),
&ec->nr_registers);
asus_wmi_ec_set_sensor_info(si++, "Motherboard", hwmon_temp,
asus_wmi_ec_make_sensor_address(1, 0x00, 0x3C),
&ec->nr_registers);
asus_wmi_ec_set_sensor_info(si++, "T_Sensor", hwmon_temp,
asus_wmi_ec_make_sensor_address(1, 0x00, 0x3D),
&ec->nr_registers);
asus_wmi_ec_set_sensor_info(si++, "VRM", hwmon_temp,
asus_wmi_ec_make_sensor_address(1, 0x00, 0x3E),
&ec->nr_registers);
}
switch (board) {
case BOARD_RS_X570_E_G:
case BOARD_R_C8H:
case BOARD_R_C8DH:
case BOARD_R_C8F:
asus_wmi_ec_set_sensor_info(si++, "CPU_Opt", hwmon_fan,
asus_wmi_ec_make_sensor_address(2, 0x00, 0xB0),
&ec->nr_registers);
asus_wmi_ec_set_sensor_info(si++, "CPU", hwmon_curr,
asus_wmi_ec_make_sensor_address(1, 0x00, 0xF4),
&ec->nr_registers);
}
switch (board) {
case BOARD_RS_X570_E_G:
case BOARD_R_C8H:
case BOARD_R_C8F:
asus_wmi_ec_set_sensor_info(si++, "Chipset", hwmon_fan,
asus_wmi_ec_make_sensor_address(2, 0x00, 0xB4),
&ec->nr_registers);
}
switch (board) {
case BOARD_R_C8H:
case BOARD_R_C8DH:
case BOARD_R_C8F:
asus_wmi_ec_set_sensor_info(si++, "Water", hwmon_fan,
asus_wmi_ec_make_sensor_address(2, 0x00, 0xBC),
&ec->nr_registers);
asus_wmi_ec_set_sensor_info(si++, "Water_In", hwmon_temp,
asus_wmi_ec_make_sensor_address(1, 0x01, 0x00),
&ec->nr_registers);
asus_wmi_ec_set_sensor_info(si++, "Water_Out", hwmon_temp,
asus_wmi_ec_make_sensor_address(1, 0x01, 0x01),
&ec->nr_registers);
}
ec->nr_sensors = si - ec->sensors;
}
/*
* Universal method for calling WMI method
*/
@ -303,17 +189,22 @@ static int asus_wmi_call_method(u32 method_id, u32 *args, struct acpi_buffer *ou
*/
static int asus_wmi_get_version(u32 *version)
{
u32 args[] = {0, 0, 0};
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
int status = asus_wmi_call_method(ASUSWMI_METHODID_GET_VERSION, args, &output);
u32 args[] = {0, 0, 0};
union acpi_object *obj;
int err;
if (!status) {
union acpi_object *obj = (union acpi_object *)output.pointer;
err = asus_wmi_call_method(ASUSWMI_METHODID_GET_VERSION, args, &output);
if (err)
return err;
if (obj && obj->type == ACPI_TYPE_INTEGER)
*version = obj->integer.value;
}
return status;
obj = output.pointer;
if (!obj || obj->type != ACPI_TYPE_INTEGER)
return -EIO;
*version = obj->integer.value;
return 0;
}
/*
@ -321,396 +212,101 @@ static int asus_wmi_get_version(u32 *version)
*/
static int asus_wmi_get_item_count(u32 *count)
{
u32 args[] = {0, 0, 0};
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
int status = asus_wmi_call_method(ASUSWMI_METHODID_GET_NUMBER, args, &output);
if (!status) {
union acpi_object *obj = (union acpi_object *)output.pointer;
if (obj && obj->type == ACPI_TYPE_INTEGER)
*count = obj->integer.value;
}
return status;
}
/*
* The next four functions converts to/from BRxx string argument format
* The format of the string is as follows:
* The string consists of two-byte UTF-16 characters
* The value of the very first byte int the string is equal to the total length
* of the next string in bytes, thus excluding the first two-byte character
* The rest of the string encodes pairs of (bank, index) pairs, where both
* values are byte-long (0x00 to 0xFF)
* Numbers are encoded as UTF-16 hex values
*/
static inline char *asus_wmi_ec_hex_utf_16_le_pack(char *buf, u8 byte)
{
*buf++ = hex_asc_hi(byte);
*buf++ = 0;
*buf++ = hex_asc_lo(byte);
*buf++ = 0;
return buf;
}
static void asus_wmi_ec_decode_reply_buffer(const u8 *inp, u8 *out)
{
u8 len = ACPI_MIN(ASUS_WMI_MAX_BUF_LEN, inp[0] / 4);
const u8 *data = inp + 2;
u8 i;
for (i = 0; i < len; ++i, data += 4)
out[i] = (hex_to_bin(data[0]) << 4) + hex_to_bin(data[2]);
}
static void asus_wmi_ec_encode_registers(u16 *registers, u8 len, char *out)
{
u8 i;
// assert(len <= 30)
*out++ = len * 8;
*out++ = 0;
for (i = 0; i < len; ++i) {
out = asus_wmi_ec_hex_utf_16_le_pack(out, (registers[i] & 0xFF00) >> 8);
out = asus_wmi_ec_hex_utf_16_le_pack(out, (registers[i] & 0x00FF));
}
}
static void asus_wmi_ec_make_block_read_query(struct asus_wmi_ec_info *ec)
{
u16 registers[ASUS_EC_KNOWN_EC_REGISTERS];
u8 i, j, register_idx = 0;
/* if we can get values for all the registers in a single query,
* the query will not change from call to call
*/
if (ec->nr_registers <= ASUS_WMI_BLOCK_READ_REGISTERS_MAX &&
ec->read_arg[0] > 0) {
/* no need to update */
return;
}
for (i = 0; i < ec->nr_sensors; ++i) {
for (j = 0; j < ec->sensors[i].addr.addr.size;
++j, ++register_idx) {
registers[register_idx] =
(ec->sensors[i].addr.addr.bank << 8) +
ec->sensors[i].addr.addr.index + j;
}
}
asus_wmi_ec_encode_registers(registers, ec->nr_registers, ec->read_arg);
}
static int asus_wmi_ec_block_read(u32 method_id, const char *query, u8 *out)
{
struct acpi_buffer input;
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER,
NULL }; // TODO use pre-allocated buffer
acpi_status status;
u32 args[] = {0, 0, 0};
union acpi_object *obj;
int err;
/* the first byte of the BRxx() argument string has to be the string size */
input.length = (acpi_size)query[0] + 2;
input.pointer = (void *)query;
status = wmi_evaluate_method(ASUSWMI_MONITORING_GUID, 0, method_id, &input,
&output);
if (ACPI_FAILURE(status)) {
acpi_os_free(output.pointer);
return -EIO;
}
err = asus_wmi_call_method(ASUSWMI_METHODID_GET_NUMBER, args, &output);
if (err)
return err;
obj = output.pointer;
if (!obj || obj->type != ACPI_TYPE_BUFFER) {
pr_err("unexpected reply type from ASUS ACPI code");
acpi_os_free(output.pointer);
if (!obj || obj->type != ACPI_TYPE_INTEGER)
return -EIO;
}
asus_wmi_ec_decode_reply_buffer(obj->buffer.pointer, out);
acpi_os_free(output.pointer);
return 0;
}
static int asus_wmi_ec_update_ec_sensors(struct asus_wmi_ec_info *ec)
{
struct asus_wmi_ec_sensor_info *si;
u32 value;
int status;
u8 i_sensor, read_reg_ct, i_sensor_register;
asus_wmi_ec_make_block_read_query(ec);
status = asus_wmi_ec_block_read(ASUSWMI_METHODID_BLOCK_READ_EC,
ec->read_arg,
ec->read_buffer);
if (status)
return status;
read_reg_ct = 0;
for (i_sensor = 0; i_sensor < ec->nr_sensors; ++i_sensor) {
si = &ec->sensors[i_sensor];
value = ec->read_buffer[read_reg_ct++];
for (i_sensor_register = 1;
i_sensor_register < si->addr.addr.size;
++i_sensor_register) {
value <<= 8;
value += ec->read_buffer[read_reg_ct++];
}
si->cached_value = value;
}
return 0;
}
static int asus_wmi_ec_scale_sensor_value(u32 value, int data_type)
{
switch (data_type) {
case hwmon_curr:
case hwmon_temp:
case hwmon_in:
return value * 1000;
default:
return value;
}
}
static u8 asus_wmi_ec_find_sensor_index(const struct asus_wmi_ec_info *ec,
enum hwmon_sensor_types type, int channel)
{
u8 i;
for (i = 0; i < ec->nr_sensors; ++i) {
if (ec->sensors[i].type == type) {
if (channel == 0)
return i;
--channel;
}
}
return 0xFF;
}
static int asus_wmi_ec_get_cached_value_or_update(int sensor_index,
struct asus_wmi_sensors *state,
u32 *value)
{
int ret;
if (time_after(jiffies, state->ec.last_updated + HZ)) {
ret = asus_wmi_ec_update_ec_sensors(&state->ec);
if (ret) {
pr_err("asus_wmi_ec_update_ec_sensors() failure\n");
return -EIO;
}
state->ec.last_updated = jiffies;
}
*value = state->ec.sensors[sensor_index].cached_value;
return 0;
}
/*
* Now follow the functions that implement the hwmon interface
*/
static int asus_wmi_ec_hwmon_read(struct device *dev, enum hwmon_sensor_types type,
u32 attr, int channel, long *val)
{
int ret;
u32 value = 0;
struct asus_wmi_sensors *sensor_data = dev_get_drvdata(dev);
u8 sidx = asus_wmi_ec_find_sensor_index(&sensor_data->ec, type, channel);
mutex_lock(&sensor_data->lock);
ret = asus_wmi_ec_get_cached_value_or_update(sidx, sensor_data, &value);
mutex_unlock(&sensor_data->lock);
if (!ret)
*val = asus_wmi_ec_scale_sensor_value(value, sensor_data->ec.sensors[sidx].type);
return ret;
}
static int asus_wmi_ec_hwmon_read_string(struct device *dev,
enum hwmon_sensor_types type, u32 attr,
int channel, const char **str)
{
struct asus_wmi_sensors *sensor_data = dev_get_drvdata(dev);
u8 sensor_index = asus_wmi_ec_find_sensor_index(&sensor_data->ec, type, channel);
*str = sensor_data->ec.sensors[sensor_index].label;
*count = obj->integer.value;
return 0;
}
static umode_t asus_wmi_ec_hwmon_is_visible(const void *drvdata,
enum hwmon_sensor_types type, u32 attr,
int channel)
{
const struct asus_wmi_sensors *sensor_data = drvdata;
return asus_wmi_ec_find_sensor_index(&sensor_data->ec, type, channel) != 0xFF ?
0444 :
0;
}
static int asus_wmi_hwmon_add_chan_info(struct hwmon_channel_info *asus_wmi_hwmon_chan,
struct device *dev, int num,
enum hwmon_sensor_types type, u32 config)
{
int i;
u32 *cfg = devm_kcalloc(dev, num + 1, sizeof(*cfg), GFP_KERNEL);
u32 *cfg;
cfg = devm_kcalloc(dev, num + 1, sizeof(*cfg), GFP_KERNEL);
if (!cfg)
return -ENOMEM;
asus_wmi_hwmon_chan->type = type;
asus_wmi_hwmon_chan->config = cfg;
for (i = 0; i < num; i++, cfg++)
*cfg = config;
memset32(cfg, config, num);
return 0;
}
static const struct hwmon_ops asus_wmi_ec_hwmon_ops = {
.is_visible = asus_wmi_ec_hwmon_is_visible,
.read = asus_wmi_ec_hwmon_read,
.read_string = asus_wmi_ec_hwmon_read_string,
};
static struct hwmon_chip_info asus_wmi_ec_chip_info = {
.ops = &asus_wmi_ec_hwmon_ops,
.info = NULL,
};
static int asus_wmi_ec_configure_sensor_setup(struct platform_device *pdev,
struct asus_wmi_sensors *sensor_data)
{
int i;
int nr_count[HWMON_MAX] = { 0 }, nr_types = 0;
struct device *hwdev;
struct device *dev = &pdev->dev;
struct hwmon_channel_info *asus_wmi_hwmon_chan;
const struct hwmon_channel_info **ptr_asus_wmi_ci;
const struct hwmon_chip_info *chip_info;
const struct asus_wmi_ec_sensor_info *si;
enum hwmon_sensor_types type;
if (sensor_data->ec_board < 0)
return 0;
asus_wmi_ec_fill_board_sensors(&sensor_data->ec, sensor_data->ec_board);
if (!sensor_data->ec.nr_sensors)
return -ENODEV;
for (i = 0; i < sensor_data->ec.nr_sensors; ++i) {
si = &sensor_data->ec.sensors[i];
if (!nr_count[si->type])
++nr_types;
++nr_count[si->type];
}
if (nr_count[hwmon_temp])
nr_count[hwmon_chip]++, nr_types++;
asus_wmi_hwmon_chan = devm_kcalloc(dev, nr_types,
sizeof(*asus_wmi_hwmon_chan),
GFP_KERNEL);
if (!asus_wmi_hwmon_chan)
return -ENOMEM;
ptr_asus_wmi_ci = devm_kcalloc(dev, nr_types + 1,
sizeof(*ptr_asus_wmi_ci), GFP_KERNEL);
if (!ptr_asus_wmi_ci)
return -ENOMEM;
asus_wmi_ec_chip_info.info = ptr_asus_wmi_ci;
chip_info = &asus_wmi_ec_chip_info;
for (type = 0; type < HWMON_MAX; type++) {
if (!nr_count[type])
continue;
asus_wmi_hwmon_add_chan_info(asus_wmi_hwmon_chan, dev,
nr_count[type], type,
hwmon_attributes[type]);
*ptr_asus_wmi_ci++ = asus_wmi_hwmon_chan++;
}
pr_info("%s board has %d EC sensors that span %d registers",
asus_wmi_ec_boards_names[sensor_data->ec_board],
sensor_data->ec.nr_sensors,
sensor_data->ec.nr_registers);
hwdev = devm_hwmon_device_register_with_info(dev, "asuswmiecsensors",
sensor_data, chip_info, NULL);
return PTR_ERR_OR_ZERO(hwdev);
}
/*
* For a given sensor item returns details e.g. type (voltage/temperature/fan speed etc), bank etc
*/
static int asus_wmi_sensor_info(int index, struct asus_wmi_sensor_info *s)
{
u32 args[] = {index, 0};
union acpi_object name_obj, data_type_obj, location_obj, source_obj, type_obj;
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
u32 args[] = {index, 0};
union acpi_object *obj;
int err;
int status = asus_wmi_call_method(ASUSWMI_METHODID_GET_INFO, args, &output);
err = asus_wmi_call_method(ASUSWMI_METHODID_GET_INFO, args, &output);
if (err)
return err;
if (!status) {
s->id = index;
s->id = index;
obj = (union acpi_object *)output.pointer;
obj = output.pointer;
if (!obj || obj->type != ACPI_TYPE_PACKAGE)
return -EIO;
if (obj && obj->type == ACPI_TYPE_PACKAGE) {
if (obj->package.count != 5)
return 1;
if (obj->package.count != 5)
return 1;
name_obj = obj->package.elements[0];
name_obj = obj->package.elements[0];
if (name_obj.type != ACPI_TYPE_STRING)
return 1;
if (name_obj.type != ACPI_TYPE_STRING)
return 1;
strncpy(s->name, name_obj.string.pointer, sizeof(s->name) - 1);
strncpy(s->name, name_obj.string.pointer, sizeof(s->name) - 1);
data_type_obj = obj->package.elements[1];
data_type_obj = obj->package.elements[1];
if (data_type_obj.type != ACPI_TYPE_INTEGER)
return 1;
if (data_type_obj.type != ACPI_TYPE_INTEGER)
return 1;
s->data_type = data_type_obj.integer.value;
s->data_type = data_type_obj.integer.value;
location_obj = obj->package.elements[2];
location_obj = obj->package.elements[2];
if (location_obj.type != ACPI_TYPE_INTEGER)
return 1;
if (location_obj.type != ACPI_TYPE_INTEGER)
return 1;
s->location = location_obj.integer.value;
s->location = location_obj.integer.value;
source_obj = obj->package.elements[3];
source_obj = obj->package.elements[3];
if (source_obj.type != ACPI_TYPE_INTEGER)
return 1;
if (source_obj.type != ACPI_TYPE_INTEGER)
return 1;
s->source = source_obj.integer.value;
s->source = source_obj.integer.value;
type_obj = obj->package.elements[4];
type_obj = obj->package.elements[4];
if (type_obj.type != ACPI_TYPE_INTEGER)
return 1;
if (type_obj.type != ACPI_TYPE_INTEGER)
return 1;
s->type = type_obj.integer.value;
}
}
return status;
s->type = type_obj.integer.value;
return 0;
}
static int asus_wmi_update_buffer(u8 source)
@ -723,17 +319,22 @@ static int asus_wmi_update_buffer(u8 source)
static int asus_wmi_get_sensor_value(u8 index, u32 *value)
{
u32 args[] = {index, 0};
struct acpi_buffer output = { ACPI_ALLOCATE_BUFFER, NULL };
int status = asus_wmi_call_method(ASUSWMI_METHODID_GET_VALUE, args, &output);
u32 args[] = {index, 0};
union acpi_object *obj;
int err;
if (!status) {
union acpi_object *obj = (union acpi_object *)output.pointer;
err = asus_wmi_call_method(ASUSWMI_METHODID_GET_VALUE, args, &output);
if (err)
return err;
if (obj && obj->type == ACPI_TYPE_INTEGER)
*value = obj->integer.value;
}
return status;
obj = output.pointer;
if (!obj || obj->type != ACPI_TYPE_INTEGER)
return -EIO;
*value = obj->integer.value;
return 0;
}
static void asus_wmi_update_values_for_source(u8 source, struct asus_wmi_sensors *sensor_data)
@ -857,7 +458,7 @@ static int asus_wmi_configure_sensor_setup(struct platform_device *pdev,
{
int err;
int i, idx;
int nr_count[HWMON_MAX] = {0}, nr_types = 0;
int nr_count[hwmon_max] = {0}, nr_types = 0;
struct device *hwdev;
struct device *dev = &pdev->dev;
struct hwmon_channel_info *asus_wmi_hwmon_chan;
@ -866,9 +467,6 @@ static int asus_wmi_configure_sensor_setup(struct platform_device *pdev,
const struct hwmon_channel_info **ptr_asus_wmi_ci;
const struct hwmon_chip_info *chip_info;
if (sensor_data->wmi.sensor_count <= 0 || sensor_data->wmi_board < 0)
return 0;
sensor_data->wmi.buffer = -1;
temp_sensor = devm_kcalloc(dev, 1, sizeof(*temp_sensor), GFP_KERNEL);
if (!temp_sensor)
@ -917,7 +515,7 @@ static int asus_wmi_configure_sensor_setup(struct platform_device *pdev,
if (!sensor_data->wmi.info_by_id)
return -ENOMEM;
for (type = 0; type < HWMON_MAX; type++) {
for (type = 0; type < hwmon_max; type++) {
if (!nr_count[type])
continue;
@ -940,12 +538,8 @@ static int asus_wmi_configure_sensor_setup(struct platform_device *pdev,
return -ENOMEM;
err = asus_wmi_sensor_info(i, temp_sensor);
if (err) {
pr_err("sensor error\n");
if (err)
continue;
}
pr_debug("setting sensor info\n");
switch (temp_sensor->data_type) {
case TEMPERATURE_C:
@ -961,23 +555,23 @@ static int asus_wmi_configure_sensor_setup(struct platform_device *pdev,
}
}
pr_info("%s board has %d sensors",
dev_dbg(&pdev->dev, "%s board has %d sensors",
asus_wmi_boards_names[sensor_data->wmi_board],
sensor_data->wmi.sensor_count);
hwdev = devm_hwmon_device_register_with_info(dev, "asuswmisensors",
sensor_data, chip_info,
NULL);
hwdev = devm_hwmon_device_register_with_info(dev, KBUILD_MODNAME,
sensor_data, chip_info, NULL);
return PTR_ERR_OR_ZERO(hwdev);
}
static int asus_wmi_probe(struct platform_device *pdev)
{
struct device *dev = &pdev->dev;
struct asus_wmi_data *data = dev_get_platdata(dev);
struct asus_wmi_sensors *sensor_data;
int err;
struct device *dev = &pdev->dev;
struct asus_wmi_data *data;
data = dev_get_platdata(dev);
sensor_data = devm_kzalloc(dev, sizeof(struct asus_wmi_sensors),
GFP_KERNEL);
@ -985,30 +579,21 @@ static int asus_wmi_probe(struct platform_device *pdev)
return -ENOMEM;
mutex_init(&sensor_data->lock);
sensor_data->ec_board = data->ec_board;
sensor_data->wmi_board = data->wmi_board;
sensor_data->wmi.sensor_count = data->wmi_count;
platform_set_drvdata(pdev, sensor_data);
/* ec init */
err = asus_wmi_ec_configure_sensor_setup(pdev,
sensor_data);
if (err)
return err;
/* old version */
err = asus_wmi_configure_sensor_setup(pdev,
sensor_data);
return err;
return asus_wmi_configure_sensor_setup(pdev,
sensor_data);
return 0;
}
static struct platform_driver asus_wmi_sensors_platform_driver = {
.driver = {
.name = "asus-wmi-sensors",
},
.probe = asus_wmi_probe
.probe = asus_wmi_probe,
};
static struct platform_device *sensors_pdev;
@ -1021,7 +606,6 @@ static int __init asus_wmi_init(void)
data.wmi_board = -1;
data.wmi_count = 0;
data.ec_board = -1;
board_vendor = dmi_get_system_info(DMI_BOARD_VENDOR);
board_name = dmi_get_system_info(DMI_BOARD_NAME);
@ -1031,9 +615,6 @@ static int __init asus_wmi_init(void)
if (!wmi_has_guid(ASUSWMI_MONITORING_GUID))
return -ENODEV;
data.ec_board = match_string(asus_wmi_ec_boards_names,
ARRAY_SIZE(asus_wmi_ec_boards_names),
board_name);
data.wmi_board = match_string(asus_wmi_boards_names,
ARRAY_SIZE(asus_wmi_boards_names),
board_name);
@ -1055,7 +636,7 @@ static int __init asus_wmi_init(void)
}
/* Nothing to support */
if (data.ec_board < 0 && data.wmi_board < 0)
if (data.wmi_board < 0)
return -ENODEV;
sensors_pdev = platform_create_bundle(&asus_wmi_sensors_platform_driver,
@ -1063,23 +644,18 @@ static int __init asus_wmi_init(void)
NULL, 0,
&data, sizeof(struct asus_wmi_data));
if (IS_ERR(sensors_pdev))
return PTR_ERR(sensors_pdev);
return 0;
return PTR_ERR_OR_ZERO(sensors_pdev);
}
module_init(asus_wmi_init);
static void __exit asus_wmi_exit(void)
{
platform_device_unregister(sensors_pdev);
platform_driver_unregister(&asus_wmi_sensors_platform_driver);
}
module_exit(asus_wmi_exit);
MODULE_AUTHOR("Ed Brindley <kernel@maidavale.org>");
MODULE_AUTHOR("Eugene Shalygin <eugene.shalygin@gmail.com>");
MODULE_DESCRIPTION("Asus WMI Sensors Driver");
MODULE_LICENSE("GPL");
MODULE_VERSION("1");
module_init(asus_wmi_init);
module_exit(asus_wmi_exit);