#ifndef ISTEAMNETWORKINGUTILS001 #define ISTEAMNETWORKINGUTILS001 //----------------------------------------------------------------------------- /// Misc networking utilities for checking the local networking environment /// and estimating pings. class ISteamNetworkingUtils001 { public: // // Initialization // /// If you know that you are going to be using the relay network, call /// this to initialize the relay network or check if that initialization /// has completed. If you do not call this, the initialization will /// happen the first time you use a feature that requires access to the /// relay network, and that use will be delayed. /// /// Returns true if initialization has completed successfully. /// (It will probably return false on the first call.) /// /// Typically initialization completes in a few seconds. /// /// Note: dedicated servers hosted with Valve do *not* need to call /// this, since they do not make routing decisions. However, if the /// dedicated server will be using P2P functionality, it will act as /// a "client" and this should be called. inline bool InitializeRelayNetworkAccess(); // // "Ping location" functions // // We use the ping times to the valve relays deployed worldwide to // generate a "marker" that describes the location of an Internet host. // Given two such markers, we can estimate the network latency between // two hosts, without sending any packets. The estimate is based on the // optimal route that is found through the Valve network. If you are // using the Valve network to carry the traffic, then this is precisely // the ping you want. If you are not, then the ping time will probably // still be a reasonable estimate. // // This is extremely useful to select peers for matchmaking! // // The markers can also be converted to a string, so they can be transmitted. // We have a separate library you can use on your backend to manipulate // these objects. (See steamdatagram_ticketgen.h) /// Return location info for the current host. Returns the approximate /// age of the data, in seconds, or -1 if no data is available. /// /// It takes a few seconds to initialize access to the relay network. If /// you call this very soon after calling InitializeRelayNetworkAccess, /// the data may not be available yet. /// /// This always return the most up-to-date information we have available /// right now, even if we are in the middle of re-calculating ping times. virtual float GetLocalPingLocation( SteamNetworkPingLocation_t &result ) = 0; /// Estimate the round-trip latency between two arbitrary locations, in /// milliseconds. This is a conservative estimate, based on routing through /// the relay network. For most basic relayed connections, this ping time /// will be pretty accurate, since it will be based on the route likely to /// be actually used. /// /// If a direct IP route is used (perhaps via NAT traversal), then the route /// will be different, and the ping time might be better. Or it might actually /// be a bit worse! Standard IP routing is frequently suboptimal! /// /// But even in this case, the estimate obtained using this method is a /// reasonable upper bound on the ping time. (Also it has the advantage /// of returning immediately and not sending any packets.) /// /// In a few cases we might not able to estimate the route. In this case /// a negative value is returned. k_nSteamNetworkingPing_Failed means /// the reason was because of some networking difficulty. (Failure to /// ping, etc) k_nSteamNetworkingPing_Unknown is returned if we cannot /// currently answer the question for some other reason. /// /// Do you need to be able to do this from a backend/matchmaking server? /// You are looking for the "ticketgen" library. virtual int EstimatePingTimeBetweenTwoLocations( const SteamNetworkPingLocation_t &location1, const SteamNetworkPingLocation_t &location2 ) = 0; /// Same as EstimatePingTime, but assumes that one location is the local host. /// This is a bit faster, especially if you need to calculate a bunch of /// these in a loop to find the fastest one. /// /// In rare cases this might return a slightly different estimate than combining /// GetLocalPingLocation with EstimatePingTimeBetweenTwoLocations. That's because /// this function uses a slightly more complete set of information about what /// route would be taken. virtual int EstimatePingTimeFromLocalHost( const SteamNetworkPingLocation_t &remoteLocation ) = 0; /// Convert a ping location into a text format suitable for sending over the wire. /// The format is a compact and human readable. However, it is subject to change /// so please do not parse it yourself. Your buffer must be at least /// k_cchMaxSteamNetworkingPingLocationString bytes. virtual void ConvertPingLocationToString( const SteamNetworkPingLocation_t &location, char *pszBuf, int cchBufSize ) = 0; /// Parse back SteamNetworkPingLocation_t string. Returns false if we couldn't understand /// the string. virtual bool ParsePingLocationString( const char *pszString, SteamNetworkPingLocation_t &result ) = 0; // // Initialization / ping measurement status // /// Check if the ping data of sufficient recency is available, and if /// it's too old, start refreshing it. /// /// Please only call this function when you *really* do need to force an /// immediate refresh of the data. (For example, in response to a specific /// user input to refresh this information.) Don't call it "just in case", /// before every connection, etc. That will cause extra traffic to be sent /// for no benefit. The library will automatically refresh the information /// as needed. /// /// Returns true if sufficiently recent data is already available. /// /// Returns false if sufficiently recent data is not available. In this /// case, ping measurement is initiated, if it is not already active. /// (You cannot restart a measurement already in progress.) virtual bool CheckPingDataUpToDate( float flMaxAgeSeconds ) = 0; /// Return true if we are taking ping measurements to update our ping /// location or select optimal routing. Ping measurement typically takes /// a few seconds, perhaps up to 10 seconds. virtual bool IsPingMeasurementInProgress() = 0; // // List of Valve data centers, and ping times to them. This might // be useful to you if you are use our hosting, or just need to measure // latency to a cloud data center where we are running relays. // /// Fetch ping time of best available relayed route from this host to /// the specified data center. virtual int GetPingToDataCenter( SteamNetworkingPOPID popID, SteamNetworkingPOPID *pViaRelayPoP ) = 0; /// Get *direct* ping time to the relays at the data center. virtual int GetDirectPingToPOP( SteamNetworkingPOPID popID ) = 0; /// Get number of network points of presence in the config virtual int GetPOPCount() = 0; /// Get list of all POP IDs. Returns the number of entries that were filled into /// your list. virtual int GetPOPList( SteamNetworkingPOPID *list, int nListSz ) = 0; // // Misc // /// Fetch current timestamp. This timer has the following properties: /// /// - Monotonicity is guaranteed. /// - The initial value will be at least 24*3600*30*1e6, i.e. about /// 30 days worth of microseconds. In this way, the timestamp value of /// 0 will always be at least "30 days ago". Also, negative numbers /// will never be returned. /// - Wraparound / overflow is not a practical concern. /// /// If you are running under the debugger and stop the process, the clock /// might not advance the full wall clock time that has elapsed between /// calls. If the process is not blocked from normal operation, the /// timestamp values will track wall clock time, even if you don't call /// the function frequently. /// /// The value is only meaningful for this run of the process. Don't compare /// it to values obtained on another computer, or other runs of the same process. virtual SteamNetworkingMicroseconds GetLocalTimestamp() = 0; /// Set a function to receive network-related information that is useful for debugging. /// This can be very useful during development, but it can also be useful for troubleshooting /// problems with tech savvy end users. If you have a console or other log that customers /// can examine, these log messages can often be helpful to troubleshoot network issues. /// (Especially any warning/error messages.) /// /// The detail level indicates what message to invoke your callback on. Lower numeric /// value means more important, and the value you pass is the lowest priority (highest /// numeric value) you wish to receive callbacks for. /// /// Except when debugging, you should only use k_ESteamNetworkingSocketsDebugOutputType_Msg /// or k_ESteamNetworkingSocketsDebugOutputType_Warning. For best performance, do NOT /// request a high detail level and then filter out messages in your callback. Instead, /// call function function to adjust the desired level of detail. /// /// IMPORTANT: This may be called from a service thread, while we own a mutex, etc. /// Your output function must be threadsafe and fast! Do not make any other /// Steamworks calls from within the handler. virtual void SetDebugOutputFunction( ESteamNetworkingSocketsDebugOutputType eDetailLevel, FSteamNetworkingSocketsDebugOutput pfnFunc ) = 0; // // Set and get configuration values, see ESteamNetworkingConfigValue for individual descriptions. // // Shortcuts for common cases. (Implemented as inline functions below) bool SetGlobalConfigValueInt32( ESteamNetworkingConfigValue eValue, int32 val ); bool SetGlobalConfigValueFloat( ESteamNetworkingConfigValue eValue, float val ); bool SetGlobalConfigValueString( ESteamNetworkingConfigValue eValue, const char *val ); bool SetConnectionConfigValueInt32( HSteamNetConnection hConn, ESteamNetworkingConfigValue eValue, int32 val ); bool SetConnectionConfigValueFloat( HSteamNetConnection hConn, ESteamNetworkingConfigValue eValue, float val ); bool SetConnectionConfigValueString( HSteamNetConnection hConn, ESteamNetworkingConfigValue eValue, const char *val ); /// Set a configuration value. /// - eValue: which value is being set /// - eScope: Onto what type of object are you applying the setting? /// - scopeArg: Which object you want to change? (Ignored for global scope). E.g. connection handle, listen socket handle, interface pointer, etc. /// - eDataType: What type of data is in the buffer at pValue? This must match the type of the variable exactly! /// - pArg: Value to set it to. You can pass NULL to remove a non-global sett at this scope, /// causing the value for that object to use global defaults. Or at global scope, passing NULL /// will reset any custom value and restore it to the system default. /// NOTE: When setting callback functions, do not pass the function pointer directly. /// Your argument should be a pointer to a function pointer. virtual bool SetConfigValue( ESteamNetworkingConfigValue eValue, ESteamNetworkingConfigScope eScopeType, intptr_t scopeObj, ESteamNetworkingConfigDataType eDataType, const void *pArg ) = 0; /// Get a configuration value. /// - eValue: which value to fetch /// - eScopeType: query setting on what type of object /// - eScopeArg: the object to query the setting for /// - pOutDataType: If non-NULL, the data type of the value is returned. /// - pResult: Where to put the result. Pass NULL to query the required buffer size. (k_ESteamNetworkingGetConfigValue_BufferTooSmall will be returned.) /// - cbResult: IN: the size of your buffer. OUT: the number of bytes filled in or required. virtual ESteamNetworkingGetConfigValueResult GetConfigValue( ESteamNetworkingConfigValue eValue, ESteamNetworkingConfigScope eScopeType, intptr_t scopeObj, ESteamNetworkingConfigDataType *pOutDataType, void *pResult, size_t *cbResult ) = 0; /// Returns info about a configuration value. Returns false if the value does not exist. /// pOutNextValue can be used to iterate through all of the known configuration values. /// (Use GetFirstConfigValue() to begin the iteration, will be k_ESteamNetworkingConfig_Invalid on the last value) /// Any of the output parameters can be NULL if you do not need that information. virtual bool GetConfigValueInfo( ESteamNetworkingConfigValue eValue, const char **pOutName, ESteamNetworkingConfigDataType *pOutDataType, ESteamNetworkingConfigScope *pOutScope, ESteamNetworkingConfigValue *pOutNextValue ) = 0; /// Return the lowest numbered configuration value available in the current environment. virtual ESteamNetworkingConfigValue GetFirstConfigValue() = 0; // String conversions. You'll usually access these using the respective // inline methods. virtual void SteamNetworkingIPAddr_ToString( const SteamNetworkingIPAddr &addr, char *buf, size_t cbBuf, bool bWithPort ) = 0; virtual bool SteamNetworkingIPAddr_ParseString( SteamNetworkingIPAddr *pAddr, const char *pszStr ) = 0; virtual void SteamNetworkingIdentity_ToString( const SteamNetworkingIdentity &identity, char *buf, size_t cbBuf ) = 0; virtual bool SteamNetworkingIdentity_ParseString( SteamNetworkingIdentity *pIdentity, const char *pszStr ) = 0; protected: // ~ISteamNetworkingUtils(); // Silence some warnings }; #endif // ISTEAMNETWORKINGUTILS001